Farthest - Site Voronoi Diagrams of Line Segments and Lines in Three and Higher Dimensions ∗

نویسندگان

  • Gill Barequet
  • Evanthia Papadopoulou
چکیده

We show that the complexity of the farthest-site Voronoi diagram of n segments (or lines) in R is Θ(n) in the worst case, and it can be computed in O(n log n) time, using O(n) space. In R, the complexity of the diagram is Θ(nd−1) in the worst case.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Farthest-Site Voronoi Diagrams of Line Segments and Lines in Three and Higher Dimensions∗

We show that the number of 3-dimensional cells in the farthest-site Voronoi diagram of n segments (or lines) in R is Θ(n) in the worst case, and that the diagram can be computed in O(k log n) time, where k is the complexity of the diagram, using O(k) space. In R, the number of d-dimensional cells in the diagram is Θ(nd−1) in the worst case.

متن کامل

Voronoi Diagram for Convex Polygonal Sites with Convex Polygon-Offset Distance Function

The concept of convex polygon-offset distance function was introduced in 2001 by Barequet, Dickerson, and Goodrich. Using this notion of point-to-point distance, they showed how to compute the corresponding nearestand farthest-site Voronoi diagram for a set of points. In this paper we generalize the polygon-offset distance function to be from a point to any convex object with respect to an m-si...

متن کامل

Farthest line segment Voronoi diagrams

The farthest line segment Voronoi diagram shows properties different from both the closest-segment Voronoi diagram and the farthest-point Voronoi diagram. Surprisingly, this structure did not receive attention in the computational geometry literature. We analyze its combinatorial and topological properties and outline an O(n log n) time construction algorithm that is easy to implement. No restr...

متن کامل

Higher Order City Voronoi Diagrams

We investigate higher-order Voronoi diagrams in the city metric. This metric is induced by quickest paths in the L1 metric in the presence of an accelerating transportation network of axis-parallel line segments. For the structural complexity of k-order city Voronoi diagrams of n point sites, we show an upper bound of O(k(n − k) + kc) and a lower bound of Ω(n+ kc), where c is the complexity of ...

متن کامل

On the Hausdorff and Other Cluster Voronoi Diagrams

The Voronoi diagram is a fundamental geometric structure that encodes proximity information. Given a set of geometric objects, called sites, their Voronoi diagram is a subdivision of the underlying space into maximal regions, such that all points within one region have the same nearest site. Problems in diverse application domains (such as VLSI CAD, robotics, facility location, etc.) demand var...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014